Chương 3
Cấu trúc chức năng của gen
I. Định nghĩa gen
Chúng ta có thể điểm qua những mốc chính trong lịch sử nghiên cứu
về gen như sau:
Mendel (1865) là người đầu tiên đưa ra khái niệm nhân tố di truyền.
Johansen (1909) đã đề xuất thuật ngữ gen (từ genos, nghĩa là sản sinh,
nguồn gốc) để chỉ nhân tố di truyền xác định một tính trạng nào đó. Sau đó,
Morgan trong những năm 1920 đã cụ thể hóa khái niệm về gen, khẳng định
nó nằm trên nhiễm sắc thể và chiếm một locus nhất định, gen là đơn vị chức
năng xác định một tính trạng.
Vào những năm 1940, Beadle và Tatum đã chứng minh gen kiểm tra
các phản ứng hóa sinh và nêu giả thuyết một gen-một enzyme. Tuy nhiên,
trường hợp hemoglobin là một protein nhưng lại gồm hai chuỗi polypeptide
do hai gen xác định, do đó giả thuyết trên buộc phải điều chỉnh lại là một
gen-một polypeptide.
Vào
những
m
1950,
DNA
(deoxyribonucleic
acid)
được
chứng
minh là vật chất di truyền. Mô hình cấu trúc DNA của Watson và Crick
được đưa ra và thuyết trung tâm (central dogma) ra đời. Gen được xem
là một đoạn DNA trên nhiễm sắc thể mã hóa cho một polypeptide hay RNA.
Cuối những năm 1970, việc phát hiện ra gen gián đoạn ở sinh vật
eukaryote cho thấy có những đoạn DNA không mã hóa cho các amino acid
trên phân tử protein. Vì thế, khái niệm về gen lại được chỉnh lý một lần nữa:
Gen là một đoạn DNA đảm bảo cho việc tạo ra một polypeptide, nó bao
gồm cả phần phía trước là vùng 5’ không dịch mã (5’ untranslation) hay còn
gọi là vùng ngược hướng (upstream) và phía sau là vùng 3’ không dịch mã
(3’ untranslation) hay còn gọi là vùng cùng hướng (downstream) của vùng
mã hóa cho protein, và bao gồm cả những đoạn không mã hóa (intron) xen
giữa các đoạn mã hóa (exon).
Hiện nay, có thể định nghĩa gen một cách tổng quát như sau: Gen là
đơn vị chức năng cơ sở của bộ máy di truyền chiếm một locus nhất định trên
Sinh học phân tử
57
nhiễm sắc thể và xác định một tính trạng nhất định. Các gen là những đoạn
vật chất di truyền mã hóa cho những sản phẩm riêng lẻ như các mRNA
được sử dụng trực tiếp cho tổng hợp các enzyme, các protein cấu trúc hay
các chuỗi polypeptide để gắn lại tạo ra protein có hoạt tính sinh học. Ngoài
ra, gen còn mã hóa cho các tRNA, rRNA và snRNA...
Bảng 3.1. Tóm tắt lịch sử nghiên cứu về di truyền học
Mốc
Năm
Các sự kiện chính
thời gian
1850
1865
Gen là các nhân tố hạt
1871
Khám phá ra nucleic acid
1900
1903
Nhiễm sắc thể là các đơn vị di truyền
1910
Gen nằm trên nhiễm sắc thể
1913
Nhiễm sắc thể là các dãy sắp xếp mạch thẳng của gen
1927
Đột biến là những thay đổi vật lý của gen
1931
Sự tái tổ hợp xuất hiện bởi hiện tượng vắt chéo
1944
DNA là vật liệu di truyền
1945
Gen mã hóa cho protein
1950
1951
Trình tự protein đầu tiên
1953
DNA có dạng xoắn kép
1958
DNA tái bản theo phương thức bán bảo thủ
1961
Mã di truyền là bộ ba
1977
Các gen của sinh vật eukaryote bị gián đoạn
1977
DNA có thể được phân tích trình tự
1995
Genome của vi khuẩn được phân tích trình tự
2000
2001
Genome người được phân tích trình tự
Sinh học phân tử
58
II. thuyết trung tâm
1. Sự xác định di truyền cấu trúc bậc một của protein
Cấu trúc không gian của chuỗi polypeptide được xác định bởi trình tự
sắp xếp của các amino acid tức cấu trúc bậc một. Như vậy, mặc dù có nhiều
mức độ cấu trúc không gian khác nhau, nhưng cấu trúc bậc một tức trình tự
sắp xếp các amino acid chi phối toàn bộ các mức độ cấu trúc khác. Việc xác
định di truyền phân tử protein ở trạng thái tự nhiên có đầy đủ hoạt tính sinh
học chỉ quy tụ lại chủ yếu ở xác định cấu trúc bậc một là đủ.
2. Các enzyme mất hoạt tính do đột biến
Nhiều nghiên cứu cho thấy, việc mất hoạt tính enzyme nhiều khi
không phải do vắng mặt của enzyme, mà chỉ do các biến đổi trên phân tử
(modification). Có trường hợp đột biến dẫn đến những thay đổi tinh vi,
enzyme vẫn có hoạt tính nhưng sẽ biểu hiện khác nếu thay đổi điều kiện.
Chẳng hạn:
Ở nấm mốc Neurospora crassa, enzyme tyrosinase do gen T xác định,
xúc tác cho phản ứng chuyển hóa tyrosine thành dihydroxyphenylalanine.
Alelle T+ của dòng hoang dại sản xuất tyrosinase có hoạt tính ở nhiệt độ
bình thường và cả ở 60oC. Một đột biến TS sản xuất tyrosine có hoạt tính ở
nhiệt độ bình thường, nhưng lại mất hoạt tính ở 60oC.
Như vậy, trong đa số trường hợp, đột biến của một gen không làm
biến mất enzyme mà chỉ biến đổi cấu trúc dẫn đến thay đổi hoạt tính. Các
đột biến của cùng một gen có thể gây ra những biến đổi khác nhau trên
enzyme. Các hiện tượng đó chứng tỏ rằng cấu trúc của enzyme chịu sự kiểm
soát trực tiếp của gen.
3. Bản chất các biến đổi di truyền của protein
Bản chất đó chính là quan hệ một gen-một polypeptide.
Như đã nêu trên, người ta khám phá ở người có những gen tạo ra
hemoglobin (Hb) khi biến dị sẽ tạo ra những hemoglobin bất thường do sai
hỏng ở các chuỗi polypeptide α hoặc β (Bảng 3.2 và 3.3) và gây ra các bệnh
di truyền.
Sinh học phân tử
59