Chương 6: Quan sát nh ba chiu
Chương 6 :
QUAN SÁT NH BA CHIU
6.1. Tng quan
Mc tiêu
Hc xong chương này sinh viên cn phi nm bt được các vn đề sau:
- Cơ chế ca phép chiếu
- Các thao tác liên quan đến phép biến đổi cách quan sát.
- Kthut quan sát nh 3 chiu
Kiến thc cơ bn
Kiến thc toán hc : các khái nim cơ bn vvtrí tương đối ca đường
thng và mt phng trong hình hc không gian.
Tài liu tham kho
Computer Graphics . Donald Hearn, M. Pauline Baker. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey , 1986 (chapters 12, 235-257)
Ni dung ct lõi
- Khái nim phép chiếu
- Phép chiếu song song
- Phép chiếu phi cnh
- Biến đổi hta độ quan sát
- Lp trình xem nh 3 chiu
6.2. Các phép chiếu
Trong đồ ha hai chiu, các thao tác quan sát biến đổi các đim hai chiu trong
mt phng ta độ thế gii thc thành các đim hai chiu trong mt phng hta độ thiết
b. Sự định nghĩa đối tượng, bct bi mt ca s, được ánh xvào mt vùng quan sát.
Các hta độ thiết bchun hóa này sau đó được biến đổi sang các hta độ thiết b, và
đối tượng được hin thlên thiết bkết xut. Đối vi đồ ha ba chiu, vic làm này phc
tp hơn mt chút, vì bây gicó vài chn la để có thquan sát nh như thế nào. Chúng ta
có thquan sát nh tphía trước, tphía trên, hoc tphía sau. Hoc chúng ta có thto
ra quang cnh vnhng gì chúng ta có ththy nếu chúng ta đang đứng trung tâm ca
Trang 98
P
P
1
1
Chương 6: Quan sát nh ba chiu
mt nhóm các đối tượng. Ngoài ra, smô tcác đối tượng ba chiu phi được chiếu lên
bmt quan sát ca thiết bxut. Trong chương này, trước hết chúng ta stho lun các
cơ chế ca phép chiếu. Sau đó, các thao tác liên quan đến phép biến đổi cách quan sát, và
đầy đủ các kthut quan sát nh ba chiu sẽ được phát trin.
Có hai phương pháp cơ bn để chiếu các đối tượng ba chiu lên bmt quan sát
hai chiu. Tt ccác đim ca đối tượng có thể được chiếu lên bmt theo các đường
thng song song, hoc các đim có thể được chiếu theo các đường hi tvmt đim
được gi là tâm chiếu (the center of projection). Hai phương pháp này được gi là
phép chiếu song song (parallel projection) phép chiếu phi cnh (perspective
projection) (xem hình 6-1). Trong chai trường hp, giao đim ca đường chiếu vi b
mt quan sát xác định các ta đim ca đim được chiếu lên mt phng chiếu này. Chúng
ta gisrng mt phng chiếu là mt z = 0 ca hta độ bàn tay trái (left-handed
coordinate system) (xem hình 6-2).
2
P’2
Mt phng
chiếu
2
P’2
Mt phng
chiếu
P
P’1
P
P’1
Tâm chiếu
(a)
(b)
Phép chiếu song song
Phép chiếu phi cnh
Hình 6-1
Hai phương pháp chiếu mt đon thng lên b mt ca mt phng chiếu
y
Hình 6-2
Mt b mt quan sát được
định nghĩa trong mt z=0 ca
z
h ta độ bàn tay trái.
x
Bmt
quan sát
Trang 99
Chương 6: Quan sát nh ba chiu
Phép chiếu song song bo tn mi quan hvchiu ca các đối tượng, và đây là
kthut được dùng trong vic phác tho để to ra các bc vtlca các đối tượng ba
chiu. Phương pháp này được dùng để thu các hình nh chính xác các phía khác nhau
ca mt đối tượng. Tuy nhiên, phép chiếu song song không cho mt hình nh thc tế ca
các đối tượng ba chiu. Ngược li, phép chiếu phi cnh to ra các hình nh thc nhưng
không bo tn các chiu liên h. Các đường xa được chiếu snhhơn các đường gn
mt phng chiếu, như trong hình 6-3 (xem hình 6-3).
Tâm chiếu
Hình 6-3
Mt phng
Hai đon thng dài bng nhau, trong
chiếu
phép chiếu phi cnh, đon nào xa mt
phng chiếu hơn s kích thước nh
6.2.1.
Các phép chiếu song song
Các hình nh được hình thành bng phép chiếu song song có thể được xác định
da vào góc hp bi hướng ca phép chiếu hp vi mt phng chiếu. Khi hướng ca
phép chiếu vuông góc vi mt phng, ta có phép chiếu trc giao (hay phép chiếu
vuông góc - orthographic projection). Mt phép chiếu có thkhông vuông góc vi mt
phng chiếu được gi là phép chiếu xiên (oblique projection).
Các phép chiếu trc giao hu như được dùng để to ra quang cnh nhìn tphía
trước, bên sườn, và trên đỉnh ca đối tượng (xem hình 6-4). Quang cnh phía trước, bên
sườn, và phía sau ca đối tượng được gi là “mt chiếu” (elevation), và quang cnh phía
trên được gi là “mt phng” (plane). Các bn vtrong kthut thường dùng các phép
chiếu trc giao này, vì các chiu dài và góc miêu tchính xác và có thể đo được tbn
v.
Trang 100
HƯỚNG DẪN DOWNLOAD TÀI LIỆU

Bước 1:Tại trang tài liệu slideshare.vn bạn muốn tải, click vào nút Download màu xanh lá cây ở phía trên.
Bước 2: Tại liên kết tải về, bạn chọn liên kết để tải File về máy tính. Tại đây sẽ có lựa chọn tải File được lưu trên slideshare.vn
Bước 3: Một thông báo xuất hiện ở phía cuối trình duyệt, hỏi bạn muốn lưu . - Nếu click vào Save, file sẽ được lưu về máy (Quá trình tải file nhanh hay chậm phụ thuộc vào đường truyền internet, dung lượng file bạn muốn tải)
Có nhiều phần mềm hỗ trợ việc download file về máy tính với tốc độ tải file nhanh như: Internet Download Manager (IDM), Free Download Manager, ... Tùy vào sở thích của từng người mà người dùng chọn lựa phần mềm hỗ trợ download cho máy tính của mình  

Giáo trình Kỹ thuật đồ họa: Phần 2

Đăng ngày | Thể loại: | Lần tải: 2 | Lần xem: 16 | Page: 62 | FileSize: 0.00 M | File type: PDF
16 lần xem

Giáo trình Kỹ thuật đồ họa: Phần 2. Giáo trình Kỹ thuật đồ họa: Phần 2 cung cấp cho người học các kiến thức: Kỹ thuật đồ họa, các phép chiếu song song, cài đặt phần cứng, khử các mặt nằm sau, phương pháp phân chia vùng,... Hi vọng đây sẽ là một tài liệu hữu ích dành cho các bạn sinh viên đang theo học môn dùng làm tài liệu học tập và nghiên cứu. Mời các bạn cùng tham khảo chi tiết nội dung tài liệu..

Nội dung

Chương 6: Quan sát ảnh ba chiều Chương 6 : QUAN SÁT ẢNH BA CHIỀU 6.1. Tổng quan • Mục tiêu Học xong chương này sinh viên cần phải nắm bắt được các vấn đề sau: - Cơ chế của phép chiếu - Các thao tác liên quan đến phép biến đổi cách quan sát. - Kỹ thuật quan sát ảnh 3 chiều • Kiến thức cơ bản Kiến thức toán học : các khái niệm cơ bản về vị trí tương đối của đường thẳng và mặt phẳng trong hình học không gian. • Tài liệu tham khảo Computer Graphics . Donald Hearn, M. Pauline Baker. Prentice-Hall, Inc., Englewood Cliffs, New Jersey , 1986 (chapters 12, 235-257) • Nội dung cốt lõi - Khái niệm phép chiếu - Phép chiếu song song - Phép chiếu phối cảnh - Biến đổi hệ tọa độ quan sát - Lập trình xem ảnh 3 chiều 6.2. Các phép chiếu Trong đồ họa hai chiều, các thao tác quan sát biến đổi các điểm hai chiều trong mặt phẳng tọa độ thế giới thực thành các điểm hai chiều trong mặt phẳng hệ tọa độ thiết bị. Sự định nghĩa đối tượng, bị cắt bởi một cửa sổ, được ánh xạ vào một vùng quan sát. Các hệ tọa độ thiết bị chuẩn hóa này sau đó được biến đổi sang các hệ tọa độ thiết bị, và đối tượng được hiển thị lên thiết bị kết xuất. Đối với đồ họa ba chiều, việc làm này phức tạp hơn một chút, vì bây giờ có vài chọn lựa để có thể quan sát ảnh như thế nào. Chúng ta có thể quan sát ảnh từ phía trước, từ phía trên, hoặc từ phía sau. Hoặc chúng ta có thể tạo ra quang cảnh về những gì chúng ta có thể thấy nếu chúng ta đang đứng ở trung tâm của Trang 98 Chương 6: Quan sát ảnh ba chiều một nhóm các đối tượng. Ngoài ra, sự mô tả các đối tượng ba chiều phải được chiếu lên bề mặt quan sát của thiết bị xuất. Trong chương này, trước hết chúng ta sẽ thảo luận các cơ chế của phép chiếu. Sau đó, các thao tác liên quan đến phép biến đổi cách quan sát, và đầy đủ các kỹ thuật quan sát ảnh ba chiều sẽ được phát triển. Có hai phương pháp cơ bản để chiếu các đối tượng ba chiều lên bề mặt quan sát hai chiều. Tất cả các điểm của đối tượng có thể được chiếu lên bề mặt theo các đường thẳng song song, hoặc các điểm có thể được chiếu theo các đường hội tụ về một điểm được gọi là tâm chiếu (the center of projection). Hai phương pháp này được gọi là phép chiếu song song (parallel projection) và phép chiếu phối cảnh (perspective projection) (xem hình 6-1). Trong cả hai trường hợp, giao điểm của đường chiếu với bề mặt quan sát xác định các tọa điểm của điểm được chiếu lên mặt phẳng chiếu này. Chúng ta giả sử rằng mặt phẳng chiếu là mặt z = 0 của hệ tọa độ bàn tay trái (left-handed coordinate system) (xem hình 6-2). •2 P’2 Mặt phẳng chiếu •2 P’2 Mặt phẳng chiếu P• P• P’1 • P’1 • Tâm chiếu (a) Phép chiếu song song (b) Phép chiếu phối cảnh Hình 6-1 Hai phương pháp chiếu một đoạn thẳng lên bề mặt của mặt phẳng chiếu y Hình 6-2 Một bề mặt quan sát được định nghĩa trong mặt z=0 của z hệ tọa độ bàn tay trái. x Bề mặt quan sát Trang 99 Chương 6: Quan sát ảnh ba chiều Phép chiếu song song bảo tồn mối quan hệ về chiều của các đối tượng, và đây là kỹ thuật được dùng trong việc phác thảo để tạo ra các bức vẽ tỷ lệ của các đối tượng ba chiều. Phương pháp này được dùng để thu các hình ảnh chính xác ở các phía khác nhau của một đối tượng. Tuy nhiên, phép chiếu song song không cho một hình ảnh thực tế của các đối tượng ba chiều. Ngược lại, phép chiếu phối cảnh tạo ra các hình ảnh thực nhưng không bảo tồn các chiều liên hệ. Các đường ở xa được chiếu sẽ nhỏ hơn các đường ở gần mặt phẳng chiếu, như trong hình 6-3 (xem hình 6-3). Tâm chiếu Hình 6-3 Hai đoạn thẳng dài bằng nhau, trong phép chiếu phối cảnh, đoạn nào ở xa mặt phẳng chiếu hơn sẽ có kích thước nhỏ Mặt phẳng chiếu 6.2.1. Các phép chiếu song song Các hình ảnh được hình thành bằng phép chiếu song song có thể được xác định dựa vào góc hợp bởi hướng của phép chiếu hợp với mặt phẳng chiếu. Khi hướng của phép chiếu vuông góc với mặt phẳng, ta có phép chiếu trực giao (hay phép chiếu vuông góc - orthographic projection). Một phép chiếu có thể không vuông góc với mặt phẳng chiếu được gọi là phép chiếu xiên (oblique projection). Các phép chiếu trực giao hầu như được dùng để tạo ra quang cảnh nhìn từ phía trước, bên sườn, và trên đỉnh của đối tượng (xem hình 6-4). Quang cảnh phía trước, bên sườn, và phía sau của đối tượng được gọi là “mặt chiếu” (elevation), và quang cảnh phía trên được gọi là “mặt phẳng” (plane). Các bản vẽ trong kỹ thuật thường dùng các phép chiếu trực giao này, vì các chiều dài và góc miêu tả chính xác và có thể đo được từ bản vẽ. Trang 100 Chương 6: Quan sát ảnh ba chiều Hình 6-4 Ba phép chiếu trực giao của một đối tượng. Quang cảnh trên đỉnh (Top View) Quang cảnh bên sườn (SideView) Quang cảnh phía trước (Front View) Chúng ta cũng có thể xây dựng các phép chiếu trực giao để có thể quan sát nhiều hơn một mặt của một đối tượng. Các quang cảnh như thế được gọi là các phép chiếu trực giao trục lượng học (axonometric orthographic projection). Hầu hết phép chiếu trục lượng học được dùng là phép chiếu cùng kích thước (isometric projection). Một phép chiếu cùng kích thước được thực hiện bằng việc sắp xếp song song mặt phẳng chiếu mà nó cắt mỗi trục tọa độ ở nơi đối tượng được định nghĩa (được gọi là các trục chính) ở các khoảng cách như nhau từ ảnh gốc. Hình 6-5 trình bày phép chiếu cùng kích thước. Có tám vị trí, một trong tám mặt, đều có kích thước bằng nhau. Tất cả ba trục chính được vẽ thu gọn bằng nhau trong phép chiếu cùng kích thước để kích thước liên hệ của các đối tượng được bảo tồn. Đây không là trường hợp phép chiếu trực giao trục lượng học tổng quát, khi mà các hệ số tỷ lệ theo ba trục chính có thể khác nhau. Các phương trình biến đổi để thực hiện một phép chiếu song song trực giao thì dễ hiểu. Đối với điểm bất kỳ (x, y, z), điểm chiếu (xp, yp, xp) trên bề mặt chiếu được tính như sau: xp = x, yp = y, zp = 0 (6-1) Trang 101 Chương 6: Quan sát ảnh ba chiều Hình 6-5 Phép chiếu cùng kích thước của một đối tượng lên bề mặt quan sát y x Mặt phẳng chiếu z (Projection plane) Một phép chiếu xiên đạt được bằng việc chiếu các điểm theo các đường thẳng song song, các đường thẳng này không vuông góc với mặt phẳng chiếu. Hình 6-6 trình bày hình chiếu xiên của điểm (x, y, z) theo một đường thẳng chiếu đến vị trí (xp, yp). Các tọa độ chiếu trực giao trên mặt phẳng chiếu là (x, y). Đường thẳng của phép chiếu xiên tạo một góc α với đường thẳng trên mặt phẳng chiếu (đây là đường nối điểm (xp, yp) với điểm (x, y)). Đường này, có chiều dài L, hợp một góc φ với phương ngang trên mặt phẳng chiếu. Chúng ta có thể diễn tả các tọa độ chiếu qua các số hạng x, y, L, và φ: xp = x + L cosφ (6-2) yp = y + L sinφ Hình 6-6 Phép chiếu vuông góc của y điểm (x, y, z) thành điểm (xp, yp) lên mặt phẳng chiếu z (x, y, z) • (xp, yp) α L x φ (x,y) Mặt phẳng chiếu Phương chiếu có thể định nghĩa bằng việc chọn các giá trị cho góc α và φ. Các chọn lựa thông thường cho góc φ là 30o và 45o, là các góc hiển thị một quang cảnh của mặt trước, bên sườn, và trên đỉnh (hoặc mặt trước, bên sườn, và dưới đáy) của một đối Trang 102 Chương 6: Quan sát ảnh ba chiều tượng. Chiều dài L là một hàm của tọa dộ z, và chúng ta có thể tính tham số này từ các thành phần liên quan. tan α = z = 1 (6-3) 1 ở đây L1 là chiều dài của các đường chiếu từ (x, y) đến (xp, yp) khi z = 1. Từ phương trình 6-3, chúng ta có L = z L1 (6-4) và các phương trình của phép chiếu xiên 6-2 có thể được viết lại như sau xp = x + z(L1 cosφ) (6-5) yp = y + z(L1 sinφ) Ma trận biến đổi để tạo ra bất kỳ việc chiếu song song có thể được viết như sau 1 ⎢ Pparallel = ⎢ 1 cosϕ ⎣ 0 0 0 0 1 0 0⎥ 1 sinϕ 0 0⎥ 0 0 1⎦ (6-6) Một phép chiếu trực giao có thể đạt được khi L1 = 0 (xảy ra ở góc chiếu α=90o). Các phép chiếu xiên được sinh ra với giá trị L1 khác không. Ma trận chiếu 6-6 có cấu trúc tương tự ma trận của phép làm biến dạng theo trục z. Thực tế, kết quả của ma trận chiếu này là làm biến dạng mặt phẳng của hằng z và chiếu chúng lên mặt phẳng quan sát. Các giá trị tọa độ x và y trong mỗi mặt của hằng z bị thay đổi bởi một hệ số tỷ lệ đến giá trị z của mặt phẳng để các góc, các khoảng cách, và các đường song song trong mặt phẳng được chiếu chính xác. Hiệu quả này được thể hiện trong hình 6-7, ở đây mặt sau của hình hộp bị biến dạng và bị nằm đè bởi mặt trước trong phép chiếu đến bề mặt quan sát. Một cạnh của hình hộp, cái nối mặt trước với mặt sau, được chiếu thành đoạn chiều dài L1, cái hợp thành một góc φ với đường ngang trong mặt phẳng chiếu. y Hình 6-7 Phép chiếu xiên của một hình hộp lên bề mặt quan sát tại mặt z Trang 103 L1 Chương 6: Quan sát ảnh ba chiều Hai góc được dùng phổ biến trong phép chiếu xiên là các góc có tgφ =1 và tgφ=2. Trường hợp đầu, φ = 45o và quang cảnh đạt được được gọi là phép chiếu cavalier. Tất cả các đường vuông góc v ới mặt phẳng chiếu được chiếu với chiều dài không thay đổi. Các ví dụ của phép chiếu cavalier đối với một hình lập phương được cho trong hình 6-8. Hình 6-8 Phép chiếu cavalier của một hình lập phương lên bề mặt chiếu với hai giá trị góc φ. Độ sâu của phép chiếu bằng với chiều rộng và chiều cao. φ=45o φ=30o (a) (b) Khi góc chiếu đuợc chọn để tgφ = 2, kết quả quang cảnh được gọi là phép chiếu cabinet. Góc phép chiếu này xấp xỉ 63.4o làm cho các đường chiếu vuông góc với bề mặt chiếu được chiếu ở một nữa chiều dài của chúng. Các phép chiếu cabinet cho hình ảnh thực hơn phép chiếu cavalier vì sự thu giảm chiều dài của các đường song song. Hình 6-9 trình bày phép chiếu cabinet cho hình lập phương. Trang 104 Chương 6: Quan sát ảnh ba chiều Hình 6-9 Phép chiếu cabinet của một hình lập phương lên bề mặt chiếu với hai giá trị góc φ. Độ sâu của phép chiếu bằng 1/2 chiều rộng và chiều cao. φ=45o φ=30o

Tài liệu liên quan