1. SỞ GDKHCN BẠC LIÊU KIỂM TRA HỌC KÌ I, NĂM HỌC 2019 – 2020. Môn: Toán 12; ĐỀ CHÍNH THỨC Thời gian: 90 phút (không kể thời gian phát đề). (Đề thi có 5 trang) Mã đề thi: 132 Họ, tên học sinh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Số báo danh:. . . . . . . . . . . . . . . . . . . . . . .Lớp:. . . . . . . . . . . . . . . . . . . . . . . NỘI DUNG ĐỀ Câu 1. Phương trình ln (5 − x) = ln (x + 1) có nghiệm là A. x = −2. B. x = 3. C. x = 2. D. x = 1. Câu 2. Gọi x1 và x2 là hai nghiệm của phương trình 25x − 7.5x + 10 = 0. Giá trị biểu thức x1 + x2 bằng A. log5 7. B. log5 20. C. log5 10. D. log5 70. Câu 3. Phương trình 32x+3 = 34x−5 có nghiệm là A. x = 3. B. x = 4. C. x = 2. D. x = 1. Câu 4. Khối chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng? A. 5. B. 2. C. 6. D. 4. Câu 5. Hình bên là đồ thị của một trong bốn hàm số sau đây. Hỏi đó y −2 là hàm số nào? 2x + 1 O 1 x A. y = x4 + 3x2 − 4. B. y = . 3x − 5 3 2 C. y = x + 3x + 4. D. y = x + 3x2 − 4. 3 −4 Câu 6. Cho khối nón có chiều cao h = 9a và bán kính đường tròn đáy r = 2a.Thể tích của khối nón đã cho là A. V = 12πa3 . B. V = 6πa3 . C. V = 24πa3 . D. V = 36πa3 . √ Câu 7. Cho hình chữ nhật ABCD có AB = 2a 3, ADB \ = 60◦ . Gọi M , N lần lượt là trung điểm của AD, BC. Khối trụ tròn xoay tạo thành khi quay hình chữ nhật ABCD (kể cả điểm trong) xung quanh cạnh M N có thể tích√ bằng bao nhiêu? √ √ 2πa 3 3 √ 8πa 3 3 A. V = 8πa3 3. B. V = . C. V = 2πa3 3. D. V = . 3 3 x+2 Câu 8. Giá trị lớn nhất của hàm số y = trên đoạn [3; 4] là x−2 A. 4. B. 2. C. 3. D. 5. x +2x+4 2 Câu 9. Phương  2 trình  − 7 cónghiệm khi  = 3m  23 7 7 A. m ∈ ; +∞ . B. m ∈ ; +∞ . C. m ∈ ; +∞ . D. m ∈ [5; +∞). 3 3 3 Câu 10. Cho hàm số y = f (x) có đồ thị như hình vẽ bên. Đường y thẳng d : y = m cắt đồ thị hàm số y = f (x) tại bốn điểm phân biệt khi −1 O1 A. −1 ≤ m ≤ 0. B. −1 < m < 0. x C. m < 0. D. m > −1. −1 Sưu tầm: Phùng V. Hoàng Em Trang 1/5 – Mã đề 132
  2. Câu 11. Cho khối trụ có chiều cao h = 4a và bán kính đường tròn đáy r = 2a. Thể tích khối trụ đã cho bằng 16πa3 A. 8πa3 . B. 16πa3 . C. 6πa3 . D. . 3 Câu 12. Cho log2 (3x − 1) = 3. Giá trị biểu thức K = log3 (10x − 3) + 2log2 (2x−1) bằng A. 8. B. 35. C. 32. D. 14. Câu 13. Cho hàm số f (x) = ax4 + bx2 + c có đồ thị như hình bên. Khẳng y định nào sau đây đúng? A. a < 0, b > 0, c > 0. B. a < 0, b < 0, c > 0. O C. a > 0, b > 0, c > 0. D. a < 0, b < 0, c < 0. x 2x − 5 Câu 14. Đồ thị (C) của hàm số y = cắt trục Oy tại điểm M . Tiếp tuyển của đồ thị x+1 (C) tại M có phương trình là A. y = 7x + 5. B. y = −7x − 5. C. y = 7x − 5. D. y = −7x + 5. x+2 Câu 15. Số đường tiệm ngang của đồ thị hàm số y = √ là 4x2 + 1 A. 2. B. 1. C. 4. D. 0. Câu 16. Cho hình chóp S.ABCD có SA⊥ (ABCD), ABCD là hình chữ nhật, AB = 2BC = 2a, SC = 3a. Thể tích khối chóp S.ABCD bằng 4a3 a3 2a3 A. a3 . B. . C. . D. . 3 3 3 Câu 17. Cho tam giác ABC vuông tại A có AB = 4a, AC = 3a. Quay tam giác xung quanh cạnh AB tạo nên một hình nón tròn xoay. Diện tích xung quanh của hình nón đó là A. Sxq = 24πa2 . B. Sxq = 12πa2 . C. Sxq = 30πa2 . D. Sxq = 15πa2 . Câu 18. Hàm số y = f (x) liên tục trên [−1; 3] và x −1 2 3 có bảng biến thiên như hình bên. Giá trị nhỏ nhất y0 − 0 + của hàm số trên đoạn [−1; 3] là A. 1. B. 5. C. 2. D. −2. 2 5 y −2 Câu 19. Thể tích của khối chóp có diện tích đáy B và chiều cao h được tính theo công thức nào sau đây? 1 2 A. V = Bh. B. V = Bh. C. V = 3Bh. D. V = Bh. 3 3 Câu 20. Hàm số nào sau đây đồng biến trên R?  e x  π x  x √ !x 1 3 A. y = . B. y = . C. y = . D. y = . 2 4 3 2 π Câu 21. Tập xác định của hàm số y = (x2 − 9x + 18) là A. (−∞; 3) ∪ (6; +∞). B. R\ {3; 6}. C. (3; 6). D. [3; 6]. Câu 22. Đạo hàm của hàm số f (x) = e4x+2019 là e4x+2019 A. f 0 (x) = . B. f 0 (x) = e4 . C. f 0 (x) = 4e4x+2019 . D. f 0 (x) = e4x+2019 . 4 Sưu tầm: Phùng V. Hoàng Em Trang 2/5 – Mã đề 132
  3. Câu 23. Bảng biến thiên ở hình bên là của x −∞ 1 +∞ hàm số nào sau đây? −x − 2 x+2 y0 + + A. y = . B. y = . +∞ x−1 x−1 −1 x−2 x−2 y C. y = . D. y = . x−1 x+1 −1 −∞ Câu 24. Trong các hàm số sau, hàm số nào đồng biến trên R? 2x − 1 A. y = . B. y = −x3 + x2 − 5x. x+2 C. y = x3 + 2x + 1. D. y = −x4 − 2x2 + 3. 2x − 1 Câu 25. Cho hàm số y = . Mệnh đề nào sau đây đúng? x+1 A. Hàm số đồng biến trên R. B. Hàm số đồng biến trên khoảng (−1; +∞). C. Hàm số nghịch biến trên các khoảng (−∞; −1) và (−1; +∞). D. Hàm số nghịch biến trên khoảng (−1; +∞). Câu 26. Cho hàm số y = f (x) có bảng xét dấu đạo hàm như hình sau: x −∞ 1 3 +∞ 0 f (x) + 0 − 0 + Khoảng nghịch biến của hàm số y = f (x) là A. (1; +∞). B. (−∞; 3). C. (1; 3). D. (−∞; 1). Câu 27. Cho hình nón có bán kính đường tròn đáy r = 3a và đường sinh l = 2r. Diện tích xung quanh của hình nón bằng A. 6πa2 . B. 9πa2 . C. 36πa2 . D. 18πa2 . Câu 28. Hàm số nào sau đây có ba điểm cực trị? 2x − 4 A. y = . B. y = −x4 − 4x2 − 2020. x+1 C. y = x3 − 3x2 + 5. D. y = 3x4 − x2 + 2019. Câu 29. Thể tích của khối hộp chữ nhật có ba kích thước lần lượt 2, 3 và 4 là A. V = 24. B. V = 8. C. V = 9. D. V = 20. Câu 30. Cho khối chóp tam giác S.ABC. Gọi M , N , P lần lượt là trung điểm của SA, SB, SC. Tỉ số giữa thể tích của khối chóp S.M N P và khối chóp S.ABC là VS.M N P 1 VS.M N P 1 VS.M N P VS.M N P A. = . B. = . C. = 8. D. = 6. VS.ABC 6 VS.ABC 8 VS.ABC VS.ABC Câu 31. Cho hàm số y = f (x) có đồ thị là hình vẽ bên. Điểm cực đại y 2 của hàm số y = f (x) là A. x = −2. B. x = 0. C. x = 2. D. y = 2. 2 O x −2 √ Câu 32.√ Cho lăng trụ đứng ABC.A0 B 0 C 0 có đáy là tam giác vuông tại A. Biết AA0 = a 3, AB = a 2 và AC = 2a. Thể tích của√khối lăng trụ ABC.A0 B 0 C 0 là √ 3 √ a3 6 3 √ 2a3 6 A. V = a 6. B. V = . C. V = 2a 6. D. V = . 3 3 Sưu tầm: Phùng V. Hoàng Em Trang 3/5 – Mã đề 132
  4. Câu 33. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x3 − 3x + 4 trên đoạn [0; 2]. Giá trị của biểu thức M 2 + m2 bằng A. 52. B. 20. C. 8. D. 40. Câu 34. Thể tích của khối cầu có bán kính r = 2 là 32π 33π A. V = . B. V = . C. 16π. D. 32π. 3 3 Câu 35. Cho a, b, c là các số dương và a 6= 1. Mệnh đề nào sau đây sai? A. loga (b · c) = loga b + loga c. B. loga (b ·  c) = loga b · loga c. b C. loga bc = c loga b. D. loga = loga b − loga c. c 1 Câu 36. Giá trị cực đại của hàm số y = x3 − 4x + 2 là 3 −10 22 A. . B. 2. C. . D. −2. 3 3 Câu 37. Cắt khối √ nón bởi một mặt phẳng qua trục ta được thiết diện là một tam giác đều có 2 √ 25 3a . Thể tích của diện tích bằng √ khối nón đó bằng √ √ 125 3πa3 125 3πa3 125 3πa3 125 3πa3 A. . B. . C. . D. . 3 6 9 12 Câu 38. Cho a, b là các số thực dương và α, β là các số thực. Mệnh đề nào sau đây sai? aα A. (aα )β = aα+β . B. (a.b)α = aα · bα . C. (aα )β = aα·β . D. β = aα−β . a 3 + 2x Câu 39. Đồ thị hàm số y = có đường tiệm cận đứng là 2x − 2 A. y = −1. B. y = 1. C. x = −1. D. x = 1. Câu 40. Tiếp tuyến của đồ thị hàm số y = x3 − 3x2 + 2 tại điểm M (−1; −2) có phương trình là A. y = 24x + 22. B. y = 24x − 2. C. y = 9x + 7. D. y = 9x − 2. x3 Câu 41. Cho hàm số y = − + (m − 1) x2 + (m + 3) x + 1 đồng biến trong khoảng (0; 3) ha 3  a khi m ∈ ; +∞ , với a, b ∈ Z và là phân số tối giản. Giá trị của biểu thức T = a2 + b2 b b bằng A. T = 319. B. T = 193. C. T = 139. D. T = 391. Câu 42. Cho hàm số y = f (x) liên tục trên R đồng thời thỏa mãn hai điều kiện • f (0) < 0; • [f (x) − 4x] · f (x) = 9x4 + 2x2 + 1, ∀x ∈ R. Hàm số g(x) = f (x) + 4x + 2020 nghịch biến trên khoảng nào sau đây? A. (−1; +∞). B. (1; +∞). C. (−∞; 1). D. (−1; 1). Câu 43. Gọi S là tập hợp tất cả các giá trị của tham số m sao cho đồ thị hàm số y = x3 − 3mx2 + 4m3 có hai điểm cực trị đối xứng nhau qua đường thẳng d : y = x. Tổng tất cả các phần tử của tập S bằng √ √ 1 2 A. 2. B. . C. . D. 0. 2 2 Câu 44. √ Hình nón (N ) có đỉnh S, đáy là đường tròn tâm I, đường sinh l = 3a và có chiều cao SI = a 5. Gọi H là điểm thay đổi trên đoạn SI. Mặt phẳng (α) vuông góc với SI tại H, cắt hình nón theo giao tuyến là đường tròn (C). Khối nón đỉnh I và đáy là đường tròn (C) có thể tích lớn nhất √ bằng √ √ √ 32 5πa3 5 5πa3 8 5πa3 16 5πa3 A. . B. . C. . D. . 81 81 81 81 Sưu tầm: Phùng V. Hoàng Em Trang 4/5 – Mã đề 132
  5. Câu 45. Cho hàm số y = f (x) có đạo hàm liên tục trên y y = f 0 (x) R và hàm số y = f 0 (x) có đồ thị như hình bên. 2  m 1 m 2 Đặt g (x) = f x − − x− − 1 + m + 1, với m 3 2 3 là tham số. Gọi S là tập hợp tất cả các số nguyên dương −1 2 của m để hàm số y = g (x) đồng biến trên khoảng (7; 8). O 3 x Tổng của các phần tử có trong tập S bằng A. 186. B. 816. −2 C. 168. D. 618. q Câu 46. Có bao nhiêu giá trị nguyên của tham số m để phương trình 2 log22 x + log 1 x − 3 = 2 √ 2 m (log4 x − 3) có nghiệm x0 ∈ [64; +∞)? A. 9. B. 6. C. 8. D. 5. Câu 47. Cho hình chóp S.ABCD có đáy ABCD là hình thoi, AC = 2a, BD = 4a. Tam giác SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Khoảng cách giữa√ hai đường thẳng BD√và SC bằng √ √ 3 5a 10a 9 5a 3 10a A. . B. . C. . D. . 16 4 16 16 Câu 48. Cho các số thực dương x, y thỏa điều  kiện x3 + xy(2x +y) = 2y 3 + 2xy (x + 2y). x2 4y 2  Điều kiện của tham số m để phương trình log23 − m log3 + 2m − 4 = 0 có nghiệm 2y x x0 ∈ [1; 3] là A. 2 ≤ m ≤ 3. B. m ≥ 3. C. m ≤ 4. D. 3 ≤ m ≤ 5. Câu 49. Cho hàm số y = f (x) liên tục trên R và có đồ thị như y hình vẽ. Gọi M , m lần  lượt là giá trị lớn  nhất, giá trị nhỏ nhất 7 của hàm số g(x) = f 4 sin4 x + cos4 x . Giá trị của biểu thức 2M + 3m bằng 3 A. 3. B. 11. C. 20. D. 14. 2 O 2 4 x Câu 50. Cho hàm số y = f (x) có đạo hàm trên R và có y đồ 4  thị như hình  vẽ bên. Số nghiệm nguyên của phương trình 0 2 [f (x2 − 2)] = 0 là A. 3 . B. 4. C. 2. D. 5. O −2 2 x —HẾT— Sưu tầm: Phùng V. Hoàng Em Trang 5/5 – Mã đề 132